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Abstract

We give an algorithmic description of the action of the Chern classes of tautologi-
cal bundles on the cohomology of Hilbert schemes of points on a smooth surface
within the framework of Nakajima’s oscillator algebra. This leads to an iden-
tification of the cohomology ring of Hilbn�A � � with a ring of explicitly given
differential operators on a Fock space. We end with the computation of the top
Segre classes of tautological bundles associated to line bundles on Hilbn up to
n � �, extending computations of Severi, LeBarz, Tikhomirov and Troshina and
give a conjecture for the generating series.

Introduction

Hilbert schemes X�n� of n-tuples of points on a complex projective manifold X are
natural compactifications of the configuration spaces of unordered distinct n-tuples
of points on X . Their geometry is determined by the geometry of X itself and the
geometry of the ‘punctual’ Hilbert schemes of all zero-dimensional subschemes in
affine space that are supported at the origin. Thus one is naturally led to the following
problem:

Determine explicitly the geometric or topological invariants of the Hilbert schemes
X �n� such as the Betti numbers, the Hodge numbers, the Chern numbers, the cohomol-
ogy ring, from the corresponding data of the manifold X itself.

This problem is most attractive when X is a surface, since then the Hilbert schemes
are themselves irreducible projective manifolds, by a result of Fogarty [12], whereas
for higher dimensional varieties the Hilbert schemes are in general neither irreducible
nor smooth nor pure of expected dimension.

The answer to the problem above for the Betti numbers was given for P� and
rational ruled surfaces by Ellingsrud and Strømme [6] and for general surfaces by
Göttsche in [14]. The answer turns out to be particularly beautiful (cf. Theorem 2.1
below). The problem for the Hodge numbers was solved by Sörgel and Göttsche [15].
For a different approach to both results see [3]. A partial answer for the Chern classes
will be given in a forthcoming paper by Ellingsrud, Göttsche and the author [5].

The question for the ring structure of the cohomology is more difficult. In general,
X ��� is the quotient of the blow-up of X � X along the diagonal by the canonical
involution that exchanges the factors. Thus the case of interest is H��X �n��, n � �.
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The ring structure for H��X ����, X smooth projective of arbitrary dimension, was
found by Fantechi and Göttsche [11]. In another direction, Ellingsrud and Strømme
[7] gave generators for H���P���n��Z�, n arbitrary, and an implicit description of the
relations.

Vafa and Witten [31] remarked that Göttsche’s Formula for the Betti numbers is
identical with the Poincaré series of a Fock space modelled on the cohomology of
X . Nakajima [24] succeeded in giving a geometric construction of such a Fock space
structure on the cohomology of the Hilbert schemes, leading to a natural ‘explanation’
of Göttsche’s result. Similar results have been announced by Grojnowski [16].

Following the presentation of Grojnowski, this can be made more precise as fol-
lows: sending a pair ���� ���� of subschemes of length n� and n��, respectively, and of
disjoint support to their union �� � ��� defines a rational map

m � X �n�� �X �n����� �X �n��n����

This map induces linear maps on the rational cohomology

mn��n�� � H
��X �n���Q� �H��X �n����Q� �� H��X �n��n����Q�

and
mn��n�� � H��X �n��n����Q� �� H��X �n���Q� �H��X �n����Q��

If we let H �� �nH
��X �n��Q�, then these maps define a multiplication and a comul-

tiplication
m� � H � H �� H � m� � H �� H � H �

which make H a commutative and cocommutative bigraded Hopf algebra. The result
of Nakajima and Grojnowski says that this Hopf algebra is isomorphic to the graded
symmetric algebra of the vector space H��X�Q� � tQ �t�.

More explicitly, Nakajima constructed linear maps1

qn � H��X�Q� �� EndQ�H �� n � Z�

and proved that they satisfy the ‘oscillator’ or ‘Heisenberg’ relations

�qn���� qm���� � n 	 �n�m 	

Z
X
�� 	 idH �

Here the commutator is to be taken in a graded sense.
The multiplication and the comultiplication of H are not obviously related to the

quite different ring structure of H , which is given by the usual cup product on each
direct summand H��X �n��Q�. (Strictly speaking, H contains a countable number of
idempotents 	X�n� � H��X �n��Q� but not a unit unless we pass to some completion).

This paper attempts to relate the Hopf algebra structure and the cup product struc-
ture. More precisely:

1Our presentation differs in notations and conventions slightly from Nakajima’s.
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Let F be locally free sheaf of rank r on X . Attaching to a point � � X�n�, i.e.
a zero-dimensional subscheme � 
 X , the C -vector space F � O� defines a locally
free sheaf F �n� of rank rn on X�n�. The Chern classes of all sheaves on X�n� of this
type generate a subalgebra A 
 H . We will describe a purely algebraic algorithm to
determine the action of A on H in terms of the Q-basis of H provided by Nakajima’s
results. We collect the Chern classes of all sheaves F�n� for a given sheaf F into
operators

ch�F � � H � H � c�F � � H � H

and geometrically compute the commutators of these operators with the oscillator op-
erators defined by Nakajima.

A central rôle is played by the operator d �� c��OX�, which — up to a factor
��	�
� — can also be interpreted as the intersection with the ‘boundaries’ of the
Hilbert schemes, i.e. the divisors 	X�n� 
 X �n� of all tuples � which have a multiple
point somewhere. The derivative of any operator f � End�H � is defined by f� �� �d� f�.
Our main technical result then says that for n 
 �

q�n��� �
n




X
�

q�qn������ �

�
n




�
qn�K��� (1)

where � � H��X�Q� � H��X�Q� �H��X�Q� is the map induced by the diagonal
embedding and K is the canonical class of X . An immediate algebraic consequence
of this relation is

�q�n���� qm���� � �nm 	 qn�m���� (2)

for n�m 
 �. By induction one concludes that the operators q� and d suffice to
generate all qn, n � 	.

The commutator of the Chern character operator ch�F � with the standard operator
q� can be expressed in terms of higher derivatives of q�:

�ch�F �� q����� �
X
n��

	

n

q
�n	
� �ch�F ���� (3)

Equations (1), (2) and (3) together give a complete description of the action of A on
H . Here are some applications:

1. We prove the following formula conjectured by Göttsche: If L is a line bundle
on X then X

n��

c�L�n��zn � exp

�
�X

m��

��	�m��

m
qm�c�L��z

m

�
A �

2. We give a general algebraic solution to Donaldson’s question for the integral
Nn of the top Segre class of the bundles L�n� associated to a line bundle L for any n
and explicitly compute Nn for n � �. From an analysis of this computational material
we derive a conjecture for the generating function for all Nn.
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3. We identify the Chow ring of the Hilbert scheme of the affine plane with an
algebra of explicitly given differential operators on the polynomial ring Q �q� � q�� � � � �
of countably many variables.

This paper is organised as follows: In Section 1 we recall the basic geometric
notions used in the later parts. Section 2 provides an introduction to Nakajima’s results.
Section 3 contains the core of this paper: we first define Virasoro operators Ln in
analogy to the standard construction in conformal field theory and show how these
arise geometrically. We then introduce the operator d and compute the derivative of
qn. Finally, in Section 4 we apply these results to compute the action of the Chern
classes of tautological bundles.

Discussions with A. King were important to me in clarifying and understanding
the picture that Nakajima draws in his very inspiring article. I am very grateful to
G. Ellingsrud for all the things I learned from his talks and conversations with him
about Hilbert schemes. To some extent the results in this article are a reflection on an
induction method entirely due to him. I thank W. Nahm for pointing out a missing
factor in Theorem 3.3 and D. Zagier for a very instructive correspondence on power
series.

Most of the research for this paper was carried out during my stay at the SFB 343
of the University of Bielefeld. I owe special thanks to S. Bauer for his continuous
encouragement, interest and support.

This article is a slightly modified version of my Habilitationsschrift [22] presented
to the Fakultät für Mathematik der Georg-August-Universität Göttingen in October
1997.

1 Preliminaries

In this section we introduce the basic notations that will be used throughout the paper
and collect some results from the literature without proof. All varieties and schemes
are of finite type over the complex numbers. X will always denote a smooth irreducible
projective surface. If f � S � S� is a morphism of schemes, I will write fX ��
�f � idX� � S �X � S� �X .

1.1 Hilbert schemes of points

For any smooth projective surface X let X�n� the Hilbert scheme of zero-dimensional
closed subschemes of length n. It has a natural structure as a projective scheme by a
result of Grothendieck [17], and is in fact a smooth irreducible variety of dimension 
n
by a theorem due to Fogarty [12]. There is a natural morphism � � X�n� � SnX ��
Xn�Sn, the Hilbert-Chow morphism, to the symmetric product, which maps a point
��� � X �n� to the cycle

P
x ��O��x� 	 x (cf. Iversen [20]). For a smooth curve C , the

map � � C�n� � SnC is an isomorphism.

Fix a point p � X and let X�n�
p �� ����np�red 
 X �n� denote the closed subset

of all subschemes � 
 X with Supp��� � fpg (with the reduced induced subscheme
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structure). By a theorem of Briançon [1], X�n�
p is an irreducible variety of dimension

n � 	 for n � 	. A new proof with a more geometric and conceptual argument was
recently given by Ellingsrud and Strømme [9].

Recall that a zero-dimensional subscheme � 
 X is called curvilinear at x � X ,
if �x is contained in some smooth curve C 
 X . Equivalently, � is curvilinear if O��x
is isomorphic to the C -algebra C �z���z��, where � � ���x� is the length of O��x. In
any flat family of zero-dimensional subschemes the points in the base space which
correspond to curvilinear subschemes form an open subset, and Briançon’s theorem is
equivalent to saying that the curvilinear subschemes are dense in X�n�p .

Generalising the definition of X�n�
p slightly, let � 
 SnX denote the small diago-

nal, and let X�n�
� �� ������, endowed with the reduced induced subscheme structure.

Thus X�n�
� consists of all subschemes � 
 X of length n which are supported at some

point in X . The fibres of the surjective morphism � � X
�n�
� � X are the schemes

X
�n�
p considered above. It follows immediately from Briançon’s theorem that X�n�� is

irreducible and of dimension n� 	.

1.2 Incidence schemes

Since X�n� in fact represents the functor Hilbn�X� of flat families of subschemes of
relative dimension 0 and length n, there is a universal family of subschemes

�n 
 X �n� �X�

For small values of n there are explicit descriptions: �� is empty, �� is the diagonal
in X � X , and �� is the blow-up Bl
�X �X� of the diagonal in X � X . The
identification is given by the quotient map Bl
�X �X�� X ��� � Bl
�X �X��S�

and any of the two projections Bl
�X �X�� X .
Assume that n� 
 n 
 �. Then there is a uniquely determined closed subscheme

X �n��n� 
 X �n�� �X �n� with the property that any morphism

f � �f�� f�� � T � X �n�� �X �n�

factors through X�n��n� if and only if f����X��n� 
 f����X��n��. Closed points in X�n��n�

correspond to pairs ���� �� of subschemes with � 
 ��. Let

X �n�� p��� X �n��n� p��� X �n�

denote the two projections. Then X�n��n� parametrises two flat families

p����X��n� 
 p����X��n���

Consider the corresponding exact sequence

�� In��n � p���XO�n� � p���XO�n � �� (4)
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The ideal sheaf In��n is a coherent sheaf on X�n��n� �X which is flat over X�n��n�

and fibrewise zero-dimensional of length n��n. It therefore induces a classifying mor-
phism to the symmetric product, analogously to the Hilbert-Chow morphism, which
we will also denote by

� � X �n��n� � Sn
��nX�

As before let X�n��n�
� �� ������, where � 
 Sn

��nX is the small diagonal. A point

in X �n��n�
� is a triple ���� x� �� with � 
 �� and Supp�I����� � fxg.

We may decompose X�n��n�
� into locally closed subsets Z�, � � �, with

Z� �� f���� x� ��j���x� � �g�

Lemma 1.1 — Z� and Z� are irreducible of dimension n�n��	 and n�n�, respec-
tively, and dim�Z�� 
 n� n� for all � 
 	. Moreover, Z� is contained in the closure
of Z�.

Proof. This follows from Briançon’s theorem by an easy dimension count. �

Definition 1.2 — For any pair of nonnegative integers define subvarieties

E�n��n�� Q�n��n� 
 X �n�� �X �X �n�

as follows: if n� 
 n 
 � let Q�n��n� and E�n��n� be the closure of Z� and Z�, respec-
tively. Moreover, Q�n���� �� X

�n��
� , E�n���� �� 
 and Q�n�n� �� 
, whereas E�n�n� ��

f��� x� ��jx � �g �� �n. On the other hand, if n � n�, let Q�n��n� � T �Q�n�n��� and
E�n��n� � T �E�n�n��� under the twist

T � X �n� �X �X �n�� � X �n�� �X �X �n��

By construction Q�n�n�� and E�n�n�� are empty or irreducible varieties of dimension
n� n� � 	 and n� n�, respectively.

Let us return to the particular case n� � n � 	: consider the projectivisation � �
P�I�n� � X �n� � X . There is a natural isomorphism P�I�n� �� X �n���n� such that
the diagram

P�I�n�
��

��������� X �n���n�

� � �p���	 �

X �n� �X

commutes. It has independently been proved by Cheah [4], Ellingsrud (unpublished),
and Tikhomirov [30], that X�n���n� is a smooth irreducible variety.

An immediate corollary is the following: there is a natural closed immersion
Bl�n�X

�n� �X� � P�I�n�; since both are irreducible varieties, this must be an iso-
morphism. The exceptional divisor E is precisely the variety E�n���n� defined above.
Hence in this situation we may write the sequence (4) as

�� �id� ���OX�n���n���E�� p���XO�n�� � p���XO�n � �� (5)
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2 The structure of the cohomology

The motivating problem in this study is to understand the cohomology rings H��X �n��
in terms of the cohomology ring H��X�. For the symmetric product Grothendieck
[18] showed that H��SnX�Q� �� �H��X�Q��n�Sn , whence Macdonald deduced a
formula for the Betti numbers of SnX [23]. For the Hilbert schemes the corresponding
question is much more difficult. This problem was solved by Göttsche [14]:

Theorem 2.1 (Göttsche) — The Betti numbers bi�X �n�� are determined by the Betti
numbers bj�X�. More precisely, the following formula holds:X

n��

X
i��

bi�X
�n��tiqn �

Y
m	�

Y
j��

�	� ��	�jt�m���jqm�����	
j bj�X	

Göttsche’s original proof uses the Weil Conjectures [14]. For a different approach
see [3]. It is clear from this formula, that the Cohomology of the Hilbert schemes
can be understood only if all Hilbert schemes are considered simultaneously. This
becomes even more apparent in Nakajima’s approach. We collect a few definitions:

Definition 2.2 — Let H ��
L

n�i�� H
n�i denote the double graded vector space with

components H n�i � Hi�X �n��Q�. Since X��� is a point, H ��� � Q . The unit in
H��X ����Q� is called the ‘vacuum vector’ and denoted by �.

A linear map f � H � H is homogeneous of bidegree ��� �� if f�Hn�i� 
 H n���i�


for all n and i. If f� f� � End�H � are homogeneous linear maps of bidegree ��� �� and
�� �� ���, respectively, their commutator is defined by

�f� f�� � f � f� � ��	�
�

�

f� � f�

We use the notation j�j, jfj etc. to denote the cohomological degree of homogeneous
cohomology classes, homogeneous linear maps etc.

Setting

��� �� ��

Z
X�n�

��

for any �� � � H��X �n��Q� defines a non-degenerate (anti)symmetric bilinear form
on H��X �n��Q� and hence on H . For any homogeneous linear map f � H � H its
adjoint fy is characterised by the relation

�f���� �� � ��	�jfj�j�j��� fy�����

Clearly, �f � g�y � gy � fy. We will be mainly concerned with linear maps which are
defined via correspondences.

Let Y� and Y� be smooth projective varieties, and let u be a class in the Chow
group An�Y� � Y��. (We tacitly assume rational coefficients. This will not always
be necessary. On the other hand, we are not interested in integrality questions for
the moment, and hence will not pay attention to this problem). The image of u in
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H�n�Y� � Y�� will be denoted by the same symbol. u induces a homogeneous linear
map

u� � H
i�Y��� Hi���dimY��n	�Y��� y �� PD��p���u � p��y��

where PD � H��Y��� H��Y�� is the Poincaré duality map.
Assume that Y� is another smooth projective variety, and v � Am�Y� � Y��. Let

pij be the projection from Y��Y��Y� to the factors Yi�Yj , and consider the element

w �� p����p
�
��u 	 p

�
��v� � An�m�dimY��Y� � Y���

Then
w� � u� � v��

See [13, Ch. 16] for details.
Suppose U 
 Y� � Y� and V 
 Y� � Y� are closed subschemes such that u �

A��U� and v � A��V �. Let

W �� p���p
��
�� �U� � p���� �V ��

Then the class w defined above is already defined in A��W �.
Let T � Y� � Y� � Y� � Y� exchange the factors. Then a Chow cycle u induces

two maps

u� � H
��Y��� H��Y�� and �Tu�� � H

��Y��� H��Y��

which are related by the formulaZ
Y�

u���� 	 � �

Z
Y�

� 	 �Tu������

This follows directly from the projection formula. Thus �Tu�� � uy�.
The following operators were introduced by Nakajima [24]. The study of their

properties is the major theme of this article. We take the liberty to change the notations
and sign conventions.

The fundamental classes of the �n��n��	�-dimensional subvarieties Q�n��n�� 

X �n�� �X �X �n�� (see 1.2) are cycles

�Q�n��n��� � An��n����X
�n�� �X �X �n����

Let the projections to the factors be denoted by p�, � and p�.

Definition 2.3 (Nakajima) — Define linear maps

q� � H
��X�Q� �� End�H �� � � Z�

as follows: assume first that � � �. For � � H��X�Q� and y � H��X �n��Q� let

q�����y� �� �Q�n���n������ y� � PD��p����Q
�n���n�� � ���� 	 p��y���

The operators for negative indices then are determined by the relation

q����� �� ��	��q����
y�
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By definition, q���� is a homogeneous linear map of bidegree ��� 
� � 
 � j�j�.
Moreover, q� � �, and if � 
 �, the operator q����y is induced by the subvarieties
Q�n�n���, n � �.

The following theorem is the main result of [24]. Similar results have been an-
nounced by Grojnowski [16].

Theorem 2.4 (Nakajima) — For any integers n and m and cohomology classes �
and �, the operators qn��� and qm��� satisfy the following ‘oscillator relations’:

�qn���� qm���� � n 	 �n�m 	

Z
X
�� 	 idH �

�

Here and in the following we adopt the convention that �� equals 	 if � � � and is
zero else, and that any integral

R
Z � is zero if deg��� �� dimR�Z�.

In [24] Nakajima only showed that the commutator relation holds with some uni-
versal nonzero constant instead of the coefficient n. The correct value was computed
directly by Ellingsrud and Strømme [9]: up to a sign factor, which depends on our con-
vention, this number is the intersection number deg��X�n�

p ���X
�n�
� �� for the subvarieties

X
�n�
� 
 X

�n�
p 
 X �n�. There is a different proof due to Grojnowski [16] and Nakajima

[25] using ‘vertex operators’.
Consider the vector spaces

W� �� H��X�Q� � tQ �t� and W� �� H��X�Q� � t��Q �t�� ��

Define a non-degenerate skew-symmetric pairing on the vector space W �� W��W�

by

f�� tn� � � tmg �� n 	 �n�m 	

Z
X
���

Note that we are taking the expression ‘skew-symmetric’ in a graded sense:

f�� tn� � � tmg � ���	�j�j�j�jf� � tm� �� tng�

The oscillator algebra is the quotient of the tensor algebra TW by the two-sided ideal
I generated by the expressions �v� w� � fv� wg 	 	 with v� w �W :

H �� TW�I�

H is the (restricted) tensor product of countably many copies of Clifford algebras
arising from Hodd�X�Q� and countably many copies of Weyl algebras arising from
Heven�X�Q�. As W� is isotropic with respect to the skew-form f � g, the subalgebra
in H generated by W� is the symmetric algebra S�W� (taken again in a Z�
-graded
sense). This becomes a double graded vector space if we define the bidegree of �� tn

as �n� 
n�
� j�j�. With these notations, Nakajima’s Theorem says: sending ��tn �
W to qn��� � End�H � defines a representation of H on H .
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The subspace W� of monomials of negative degree annihilates the vacuum vector
� � H for obvious degree reasons. Hence there is an embedding

S�W�
�� H�H 	W�

��
�� H 	 � 
 H �

It is not difficult to check that the Poincaré series of S�W� equals the right hand side
of Göttsche’s formula. This implies:

Corollary 2.5 (Nakajima) — The action of H on H induces a module isomorphism
S�W� � H . In particular, H is irreducible and generated by the vacuum vector. �

3 The boundary operator

The key to our solution of the Chern class problem is the introduction of the boundary
operator d � End�H �. This is done in 3.2. We begin with the discussion of related
topics and ingredients for later proofs.

3.1 Virasoro generators

Starting from the basic generators qn and the fundamental oscillator relations we will
define the corresponding Virasoro generators Ln in analogy to the procedure in con-
formal field theory. We will then give concrete geometric interpretations for these
generators.

Let � � H��X� � H��X � X� � H��X� � H��X� be the push-forward
map associated to the diagonal embedding. Equivalently, this is the linear map ad-
joint to the cup-product map. If ���� �

P
i �

�
i � ���i , we will write qnqm���� forP

i qn��
�
i�qm��

��
i ��

Definition 3.1 — Define operators Ln � H��X�Q� � End�H �, n � Z, as follows:

Ln ��
	




X
��Z

q�qn���� if n �� �

and
L� ��

X
�	�

q�q����

Remark 3.2 — i) The sums that appear in the definition are formally infinite. How-
ever, as operators on any fixed vector in H , only finitely many of them are nonzero.
Hence the sums are locally finite and the operators Ln are well-defined. Ln��� is
homogeneous of bidegree �n� 
n� j�j�

ii) Using the physicists’ normal order convention

� qnqm � ��

�
qnqm if n � m�
qmqn if n � m�
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the operators Ln can be uniformly expressed as

Ln �
	




X
��Z

� q�qn�� � ��

Theorem 3.3 — The operators Ln and qm satisfy the following commutation rela-
tions:

1. �Ln���� qm���� � �m 	 qn�m�����

2. �Ln����Lm���� � �n�m� 	 Ln�m�����
n��n
�� �n�m 	

R
X c��X��� 	 idH �

Taking only the operators Ln�	�, n � Z, we see that the Virasoro algebra acts on
H with central charge equal to the Euler number of X .

Proof. Assume first that n �� �. For any classes � and � with

���� �
X
i

��i � ���i

we have

�q���
�
i�qn����

��
i �� qm���� � q���

�
i��qn����

��
i �� qm����

���	�j�j�j�
��

i j�q���
�
i�� qm����qn����

��
i �

� ��m��n�m�� 	 qn�m��
�
i� 	

Z
X
���i �

���	�j�j�j�j��m����m 	

Z
X
���i 	 qn�m��

��
i ��

If we sum up over all � and i, we get


�Ln���� qm���� �
X
�

�q�qn������� qm���� � ��m� 	 qn�m���

with

� � pr������� 	 pr
�
����� � ��	�j�j�j�j 	 pr���pr

�
���� 	 ����� � 
 	 ���

Similarly, for � 
 �,

�q�q������� qm���� � �m 	 qm���� 	 ��m�� � �m����

Thus summing up over all � 
 � we find again

�L����� qm���� � �m 	 qm�����

This proves the first part of the theorem.
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As for the second part, assume first that n � �. In order to avoid case considera-
tions let us agree that qN

�
is zero if N is odd. Then we may write:

Lm �
	



q�m

�
� �

X

	m

�

q
qm�
��

By the first part of the theorem we have

�Ln���� q
qm�
����� �
�
� �qn�
qm�
 � ���m�q
qn�m�


	
������

In the following calculation we suppress �� � and � up to the very end. Summing up
over all � � m�
, we get:

�Ln�Lm� � �
m

�
�qn�m

�
qm

�
� qm

�
qn�m

�
�

�
X

	m

�

���m�q
qn�m�
 �
X

	m

�

����qn�
qm�


� �
m

�
�qn�m

�
qm

�
� qm

�
qn�m

�
�

�
X

	m

�

���m�q
qn�m�
 �
X


	n�m
�

�n� ��q
qn�m�


Hence

�Ln�Lm�� �n�m�
X


	n�m
�

q
qn�m�
 � �
m

�
�qn�m

�
qm

�
� qm

�
qn�m

�
�

�
X

m
�
�
	m�n

�

���m�q
qm�n�


�
X

n�m
�

�
	n�m
�

�n� ��q
qn�m�


Now split off the summands corresponding to the indices � � m�n
� and � � n � m

�
from the sums. Substituting n�m�� for � in the second sum on the right hand side,
we are left with the expression:

�Ln�Lm�� �n�m�Ln�m � �
m

�
�qm

�
� qn�m

�
� �

X
m
�
�
�n�m

�

���m��q
� qn�m�
�

The right hand side is zero unless n�m � �. In this case, observe that the composition

H��X�
�
�� H��X� �H��X�



�� H��X�

is multiplication with c��X�. Hence we see that

�Ln����Lm���� � �n�m�Ln�m���� � �n�m 	

Z
X
c��X��� 	N�

12



where N is the number

N �
X

����n
�

��� � n� if n is odd,

and

N �
X

����n
�

��� � n��
n�

�
if n is even.

An easy computation shows that in both cases N equals �n� n���	
. �

Recall the definition of the varieties E�n
��n� 
 X �n�� �X �X �n� in (1.2).

Definition 3.4 — Let � be a nonnegative integer and let

e� � H
��X�� End�H �

be the linear map

e�����y� � �E�n���n������ y� � PD��p����E
�n���n�� � ���� 	 p��y��

for � � H��X�Q� and y � H��X �n��Q�.

The following theorem gives a ‘finite’ geometric interpretation of the infinite sums
which define the Virasoro operators.

Theorem 3.5 — Let n be a nonnegative integer.

1.

�en���� qm���� �

�
m 	 qn�m���� if m 
 � or m 
 �n�
� else�

2.

en � Ln �
	




X
����n

q�qn����

Proof. Ad 1: Assume first that m � 	. To simplify the notations we introduce the
short-hand

X �n����n������ ��nk� �� X �n�� �X �n�� � � � � �X �nk�

Suppose � � �, and consider the following diagram

X ���n�m���������m� p���
����� X ���n�m���������m��������� p���

����� X ���m���������



yp����
X ���n�m�������������

13



The product operator enqm is induced by the class

z �� p��
���p
�
����E

���m�n���m�� 	 p��
��Q
���m����� � A���n�m���Z

��

where

Z � �� p��
��p
��
����E

���m�n���m�� � p���
��Q
���m�����


 Z �� f���� x� y� ��j�� � �� � � � nx� � � � � my� x � �g

Here the notation � � � � my should comprise the conditions: � is a subscheme of �,
and the ideal sheaf of � in � is of length m and is supported at y etc.

Similarly, the operator qnem is induced by a class v � A���m�n���V
�� with

V � 
 V �� f���� x� y� ��j��� � �� � �� � mx� �� � � � ny� y � �g�

Moreover, if T � X���m�n������������� �� X ���m�n������������� exchanges the two copies
of X in the middle, then the commutator �en� qm� is induced by z � T �v�.

Now observe that off the diagonal fx � yg 
 X���m�n������������� the subsets Z
and T �V � are equal. Moreover, there is only one component of (maximal possible)
dimension 
��n�m�	. It is easy to see that this component has multiplicity 	 both
in z and T �v�: the intersection

p������E
���m�n���m�� � p���
��Q

���m����

is transversal over a general point in this component of Z , and maps injectively into
Z . Thus the only contributions to z � T �v� may arise from the diagonal part. Now

V � fx � yg � f���� x� x� ��j�� � � � �n�m�x� x � �g�

We have seen earlier (1.1) that this set has dimension � 
��n�m and hence may be
disregarded. On the other hand

Z � fx � yg � f���� x� x� ��j�� � � � �n�m�xg�

Again using 1.1 we see that this set has only one component D of (maximal) dimension

�� n�m� 	. Moreover, this component is the image of the embedding

� � Q���n�m��� � X ���n�m�������������� ���� x� �� �� ���� x� x� ���

Let �� � � H��X�Q� and y � H��X ����Q�. Then we have

p����D� � p������ �� 	 p�
y�

� p������Q
���n�m���� � p������ �� 	 p�
y�

� p����Q
���n�m���� � ���p������ �� 	 p�
y��

� p����Q
���n�m���� � p������ 	 p

�
�y�

This shows that
�en���� qm���� � � 	 qn�m����
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for some integer �. Hence it remains to compute the multiplicity � of �D� in z. To this
end we pick a general point d � D and inspect the intersection of p������E

���n�m����
and p���
��Q

���m���� along the fibre p����
��d�.
A general point in D is of the form

d � ���� x� x� �� with �� � � � ��

where � is a curvilinear subscheme of X of length n�m, supported in a single point
x which is disjoint from �. Since � is curvilinear, there is a unique subscheme � 
 �
of length m, and hence p����
��d� consists of the single point

d� � �� � �� x� � � �� x� ��

Near d� the varieties X���m�n���������m��������� and X����������� � X �m�n�������m����� are lo-
cally isomorphic in the étale topology; and similarly E���m�n���m� to X ����E�m�n�m�

and Q���m��� to X ��� �X
�m�
� . Thus we may split off the factors X��� from the geomet-

ric picture. In the end this amounts to saying that we may assume without loss of
generality that � � �.

Moreover, the calculation is local (in the étale topology) in X , so that we may
assume that X � A � � SpecC �z� w� and I� � �w� zn�m�, I� � �w� zm� and Ix �
�w� z�. Then d� has an affine neighbourhood �� A 
m��n�
 in X �n�m�������m����� with
coordinate functions

a�� � � � � an�m��� b�� � � � � bn�m��� w�� z�� c�� � � � � cm��� d�� � � � � dm��� w�� z��

which parametrises quadruples ��� x� �� y� of subschemes in X given by the ideals

�w � g��z�� f��z��� �w � w�� z � z��� �w � g��z�� f��z��� �w � w�� z � z���

where

f��z� �

n�m��X
i��

aiz
i � zn�m� g��z� �

n�m��X
i��

biz
i

and

f��z� �

m��X
i��

ciz
i � zm� g��z� �

m��X
i��

diz
i�

Now ��� y� belongs to X�m�
� , i.e. Supp��� � fyg, if and only if

f��z� � �z � z��
m and w� � g��z��� (6)

And ��� x� �� belongs to Q�n�m�m� if and only if the following three conditions are
satisfied: � 
 � , i.e.

g��z� � g��z� � f��z� 	 h�z� and f��z� � f��z� 	 k�z� (7)

15



with polynomials h and k of degree n� 	 and n, respectively; the ideal sheaf I��� is
supported at x, i.e.

k�z� � �z � z��
m and w� � g��z�� (8)

and finally, x must be contained in �, which imposes the condition

f��z�� � � (9)

One easily checks that the equations (6) - (8) cut out a smooth subvariety which
projects isomorphically to the affine space Spec C �z� � z�� b�� � � � � bn�m���. Moreover,
in these coordinates the last condition (9) simply reads �z� � z��

m � �. Hence the
multiplicity � equals the exponent m.

Next, we consider the case �en� q�m� with � � m � n. There is nothing to prove
if m � �. Hence assume that m 
 �. Dimension arguments similar to the ones above
show that the cycle v which induces the commutator �q�m� en� must be supported on
the closed subsets

V �� f��� x� x� ��j� � � � x� � � � � �n�m�xg 
 X ���n�m�������������� � � ��

The cycle v has degree 
� � n � m � 	, so that it suffices to show that dim�V � �

�� n�m. This follows from Lemma 1.1.

It remains to consider the case �en� qm� with m 
 �n. A dimension check of the
set-theoretic support of the intersection cycle shows that we must have

�en���� q�m���� � � 	 qn�m����

for some integer �, independently of � and �. To determine �, we proceed alge-
braically and take the commutator with qm�n�	�:

� �en���� q�m����� qm�n�	�� � � 	 �qn�m����� qm�n�	�� � ��n�m�

Z
X
�� 	 idH �

On the other hand, combining the Jacobi identity, the oscillator relations and the first
part of the proof yields

� �en���� q�m����� qm�n�	�� � � �en���� qm�n�	��� q�m����

� �m� n��qm���� q�m����

� m�m� n�

Z
X
�� 	 idH �

It follows that � � �m.

Ad 2: Consider the difference y �� en��� �Ln����
�
�

Pn��
��� q�qn������. Com-

paring the expressions in 3.3 and part 1 of the theorem we see that y commutes with
all operators qm , m � Z. Since H is a simple N -module, y must be a scalar (in
some algebraic extension of Q), which is impossible: if n 
 �, then y has non-trivial
bidegree �n� 
n� j�j�, and if n � �, it is easy to see directly that y 	 � � �. �
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Remark 3.6 — In particular, the operator L���� has the following geometric inter-
pretation: the universal family �n 
 X �n� �X induces a homomorphism

��n�� � H
��X�Q� �� H��X �n��Q��

and
L�����y� � ���n����� 	 y for all y � H��X �n��Q��

If we insert � � �	X , we get L���	X��y� � n 	 y for all y � H��X �n��Q�. Thus
L���	X� is the ‘number’ operator, that counts with how many points we are dealing.
This can, of course, also be deduced directly from the definition of L�.

3.2 The boundary of the Hilbert scheme

For any partition � � ��� � �� � � � � � �s 
 �� of n the tuples
P

�	i	s �ixi,

xi � X , form a locally closed subset Sn�X in SnX . Let X �n�
� � ����Sn�X�. It follows

from Briançon’s Theorem that X�n�
� is irreducible and

dim�X
�n�
� � �

X
�	i	s

��i � 	� � n� s�

The generic open stratum is X�n�
�������� ��	. It corresponds to the configuration space of

unordered n-tuples of pairwise distinct points. Furthermore, there is precisely one
stratum of codimension 1, namely X

�n�
�������� ��	�

If � � ���� � � � � �s� and � � ���� � � � � �s�� are partitions of n, then X
�n�

 is con-

tained in the closure of X�n�
� if and only if there is a surjection

� � f	� � � � � sg � f	� � � � � s�g

such that �j �
P

i�����j	 �i for all j. It follows that

	X �n� ��
�

��������� ��	

X
�n�
� � X

�n�
�������� ��	

is an irreducible divisor in X�n�. As it is the complement of the configuration space in
X �n� we might and will call it the boundary of X�n�.

We will need a different description of the divisor 	X�n� in sheaf theoretic terms.
Let p � �n � X �n� be the projection, and define sheaves

O�n�
X �� p��O�n� � Coh�X �n���

As p is flat and finite of degree n, O�n�
X is locally free of rank n.

Lemma 3.7 — We have h
	X �n�

i
� �
 c��O

�n�
X �

Moreover, let E 
 X�n���n� be the exceptional divisor. Then

p��	X
�n��� � p��	X

�n� � 
 	E�
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Proof. 	X�n� is the branching divisor of the finite flat morphism �n � X �n�. The
assertion holds true in a more general setting: if Y is a smooth variety and � � Y� � Y
is a finite flat map, so that A �� ��OY � is a locally free OY –sheaf, the branching
divisor is given by the discriminant of the OY -bilinear form

A�OY
A

�
�� A

tr
�� OY �

or, equivalently, by the determinant of the adjoint linear map A � A�, so that indeed
the branching divisor is given by �
 c��A�.

Applying p� to the short exact sequence (5) we get an exact sequence

�� OX�n���n���E�� p��O
�n���
X � p��O

�n�
X � ��

from which one deduces the second assertion. �

This proof was communicated to me by S. A. Strømme and replaces a slightly
longer one in an earlier version.

Definition 3.8 — Let d � H � H be the homogeneous linear map of bidegree ��� 
�
given by

d�x� �� c��O
�n�
X � 	 x � �

	




h
	X �n�

i
	 x for all x � H��X �n���

For any endomorphism f � End�H � its derivative is f� �� �d� f�. As usual, we write
f�n	 �� �ad d�n�f� for the higher derivatives.

It follows directly from the Jacobi identity that f �� f� is a derivation, i.e. for any
two operators a� b � End�H � the ‘Leibniz rule’ holds:

�ab�� � a�b� ab� and �a� b�� � �a�� b� � �a� b���

Moreover, if f � H��X ���� � H��X �n�� is a homogeneous linear map, then jf�j �
jfj� 
, so that f and f� have the same parity. Furthermore,

�f��y � ��fy���

Indeed, this follows formally from the obvious fact that dy � d.
Let n� 
 n be nonnegative integers, and consider the incidence variety X�n

��n� 

X �n�� �X �n�. Recall the definition of the ideal sheaf In��n and the exact sequence

�� In��n � p���XO�n� � p���XO�n � ��

Then p��In��n� is a locally free sheaf of rank n� � n on X�n��n�.

Lemma 3.9 — Let u� � H��X �n��Q� � H��X �n���Q� be the induced linear map
associated to a class u � A��X

�n��n��. Then

�u��
� � �c��p��In��n�� 	 u���
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Proof. Let y � H��X �n��Q�. Then

�u��
��y� � d�u��y��� u��d�y��

� c��p�O�n� � 	 PD
��p���u 	 p

�
�y�

�PD��p���u 	 p
�
��c��p�O�n� 	 y��

� PD��p����p
�
�c��p�O�n� �� p��c��p�O�n�� 	 u 	 p

�
�y�

� v��y�

with v � �p��c��p�O�n� �� p��c��p�O�n�� 	 u, and

p��c��p�O�n�
�� p��c��p�O�n� � c��p�p

�
��XO�x�

�� c��p�p
�
��XOXn�

� c��p�In��n��

�

3.3 The derivative of qn

In order to understand the intersection behaviour of the boundary 	X�n� we need to
know how the operator d commutes with the basic operators qn, in other words: we
need to compute the derivative of qn.

The following theorem describes the derivative of the operator qn in two ways: By
its action on any of the other basic operators, and as a polynomial expression in the
basic operators. This is the main technical result of the paper.

Let K denote the canonical class of the surface X .

Main Theorem 3.10 — For all n�m � Z and �� � � H��X�Q� the following holds:

1. �q�n���� qm���� � �nm 	
n
qn�m���� �

jnj��
� �n�m 	

R
X K�� 	 idH

o
�

2. q�n��� � n 	 Ln��� �
n�jnj��	

� qn�K���

Corollary 3.11 — The operators d and q����, � � H��X�, suffice to generate H

from the vacuum �. �

Proof of the theorem. The second assertion is an immediate consequence of the
first: by Nakajima’s relations 2.4 and the relations 3.3 we see that

�n 	 Ln��� �
n�jnj � 	�



qn�K��� qm���� �

�nm 	 qn�m���� � �n�m
n��jnj � 	�




Z
X
K�� 	 idH �

Hence the difference of q�n and the expression on the right hand side in the theorem
commutes with all operators qm, m � Z. Since H is an irreducible N -module, it
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follows from Schur’s Lemma that this difference is given by multiplication with a
scalar (say, after passage to some algebraic closure of Q). But this is impossible for
degree reasons: the bidegree of q�n��� is �n� 
n � j�j�. (The case n � � being trivial
anyhow.)

The proof of the first assertion has two parts of quite different nature: We need to
distinguish the cases n�m �� � and n�m � � and deal with them separately.

Proposition 3.12 — �q�n���� qm���� � �nm 	 qn�m���� for any two integers n�m
with n�m �� � and cohomology classes �� � � H��X�.

Proof. Step 1: Assume that n and m are positive. We proceed as in the proof of
Theorem 3.5. Let � be nonnegative, and consider the diagram

X ���n�m���������m� p���
����� X ���n�m���������m��������� p���

����� X ���m���������



yp����
X ���n�m��������������

Let
v �� p�����Q

���m�n���m�� 	 p��
��Q
���m���� � A���m�n���V ��

V �� p������Q
���m�n���m�� � p���
��Q

���m�����

According to Lemma 3.9, the operator q�nqm is induced by the class

w � p��
���p
�
���c��I��m�n���m� 	 v� � A���m�n���W ��W �� p��
��V ��

Let V � 
 V and W � 
 W denote the open subsets of those tuples ��� x� �� y� �� and
��� x� y� ��, respectively, where either x �� y or x � y but �x is curvilinear. Certainly,
V � � p����
��W

��, but in fact we even have that p��
� � V � � W � is an isomorphism:
for the conditions imposed on V � imply that � is already determined by the remaining
data ��� x� y� ��.

Claim: V � is irreducible of dimension 
�� n�m� 
.
For it follows from Briançon’s Theorem that the open part V� n fx � yg is ir-

reducible of dimension 
� � �n � 	� � �m � 	�, and tuples of the second kind, i.e.
��� x� x� �� with �x curvilinear, are easily seen to deform into this open subset.

Claim: dim�W nW �� 
 
��m� n� 	. In particular, the complement of W� in
W cannot support any contribution to w.

Indeed, the set T � f��� x� x� ��j� � � � �n � m�xg has a stratification T ��
i�� Ti, where the stratum Ti is the locally closed set of all tuples with length��x� �

i. Let T �� 
 T� be the closed subset that consists of tuples where �x is not curvilinear.
Then W nW � 
 T ���T��T� � � � . Now T� is irreducible of dimension 
���n�m�	�,
and T �� is a proper closed subset and therefore has strictly smaller dimension. The
assertion now follows from Lemma 1.1.

Claim: The intersection of p�����Q
���m�n�� and p��
��Q

���m�m�� is transversal at
general points of V �.
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In fact, the intersection is transversal at all points with x �� y and � curvilinear.
We conclude, that the intersection cycle v equals �V�� � r, where r is a cycle

supported on p����
��W nW �� and therefore irrelevant for our further computations for
dimension reasons. Let us return to the definition of the cycle w.

Identifying V � and W � we see that the variety W� parametrises three families

Z 
 � 
 � 
W � �X

of subschemes in X . In terms of these we can summarise the discussion above by
stating that q�nqm is induced by the cycle

c��p�I���� 	 �W
�� � A��W

���

Having reached this point we pause to reflect what changes in this picture if we
exchange the order of the operators qn and qm. Up to the usual twist T that flips the
factors X in X���m�n�������������, not a iota is changed in W�. Indeed, W � parametrises
not only three but rather four families of subschemes

��

� �
Z �

� �
���

where �� and ��� are characterised by the property that at a point s � ��s� x� y� Zs� �
W � the subschemes ��s��

��
s 
 �s are the unique ones with

��s � Zs � mx � �s � ��s � ny

and
���s � Zs � ny � �s � ���s � mx�

This means: the commutator �q�n� qm� is induced by the cycle�
c��p�I������ c��p�IZ�����

	
	 �W �� � A���n�m���X

���n�m���������������

The ideal sheaves corresponding to the various inclusions between the families
Z , ��, ��� and � are related by the following commutative diagram of short exact
sequences

� �� I���� �� IZ�� �� IZ��� �� �

�


y 


 x



� �� IZ���� �� IZ�� �� I����� �� �

�

The homomorphism
p�� � p�I���� � p�IZ����
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is an isomorphism off the diagonal fx � yg 
 W�. On the other hand the clo-
sure of W � � fx � yg equals the image of the ‘diagonal’ embedding Q���m�n��� �
X ���m�n�������������. It follows that�

c��p�I������ c��p�IZ�����
	
	 �W �� � �� 	 �Q���m�n����

where � is the length of coker�p��� at the generic point of the variety Q���m�n���. This
proves

�q�n���� qm���� � �� 	 qn�m�����

and it remains to show that
� � nm�

A general point d � ��� x� y� �� of Q���m�n��� is of the form �� � �� x� x� �� where
� � � � 
 and � is a curvilinear subscheme supported at x. As the computation
is local in X we may apply the same reduction process as in the proof of Theorem
3.5: we may assume that � � �, that X � A� � SpecC �z� w�, x � ��� �� and
I� � �w� zn�. Then there is an open neighbourhood of this point d in W� which
isomorphic to A n�m�� � SpecC �a� � � � � � an�m��� s� t� such that the families ����

and ��� are given by the ideals

I� � �w � f�z�� �z � t�n�z � s�m�� I�� � �w � f�z�� �z � s�m�

and
I��� � �w � f�z�� �z � t�n��

where f�z� � a� � a�z � � � �� an�m��z
n�m��. We find

p�O��� � C �a� s� t��z���z � t�n

and
p�I���� � �z � s�m 	 C �a� s� t��z���z � s�m�z � t�n�

The cokernel of

p�� � �z � s�m 	 C �a� s� t��z���z � s�m�z � t�n �� C �a� s� t��z���z � t�n

is isomorphic to the C �a� s� t�-module

C �a� s� t��z����z � s�m� �z � t�n� �� C �a� s� t��z � s� z � t����z � s�m� �z � t�n��

This module is supported along the diagonal fs � tg (as we expected), and its stalk at
the generic point of the diagonal has length nm (as we had to prove).

Step 2: Assume that m is positive and �m 
 n 
 �. First one shows as above
that the commutator �q�n� qm� is induced by cycles in A���n�m���X

���m�n��������������
for each � � �, which are supported on the diagonally embedded varieties Q���m�n���,
so that

�q�n���� qm���� � �cn�m 	 qn�m����

22



for certain constants cn�m. In order to determine these constants we apply the commu-
tator � � � q�n�m�	��. Then the oscillator relations yield for the right hand side

�cn�m�n�m�

Z
X
�� 	 idH �

On the other hand

� �q�n���� qm����� q�n�m�	�� � � �q�n���� q�n�m�	��� qm����

Now

�q�n���� q�n�m�	�� � ��	�m��qy�n�
����� qyn�m�	��

� ���	�m�qn�m�	�� q
�
�n����

y�

which by Step 1 equals ��	�mn�n�m�qm���
y � n�n�m�q�m���. Hence

� �q�n���� qm����� q�n�m�	�� � n�n�m��q�m���� qm����

� n�n�m���m�

Z
X
�� 	 idH �

Choose classes �� � with
R
X �� �� �. It follows that cn�m � nm.

Step 3: The general case can now be reduced formally to the cases already treated.
The assertion is certainly trivial if either n � � or m � �. If the assertion is known to
be true for some pair �n�m�, we may apply the operation y to both sides and find:

�q��n���� q�m���� � ��	�n�m��qyn�
����� qym����

� ���	�n�m��q�n�
y���� qym����

� ��	�n�m�q�n���� qm����y � �nm 	 ��	�n�mqyn�m����

� ��n���m� 	 q�n�m�����

This and the identity

�q�n���� qm���� � ��	�j�j�j�j�q�m���� qn����

allow us to reduce anything to cases checked in Step 1 and Step 2. �

In order to prove part 1 of Theorem 3.10, it remains to treat the case n � m �
�. This will be done in two steps. First, we prove a qualitative statement about the
structure of the ‘correction term’, and afterwards we determine the precise value of the
‘coefficient’ Kn:

Proposition 3.13 — There exist rational divisors Kn � Pic�X� � Q , n � Z, with
K� � � and K�n � Kn and such that

�q�n���� q�n���� � n� 	

Z
X
Kn�� 	 idH (10)

for all �� � � H��X�.
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Proof. There is nothing to prove for n � �. Moreover,

�q�n���� q�n���� � ��	�j�j�j�j 	 �q��n���� qn�����

It follows that if there is a divisor Kn so that (10) holds for n, then (10) also holds for
�n with the choice K�n � Kn. Hence it suffices to prove the proposition for positive
integers n.

Let � be a nonnegative integer and consider the diagram

X �����������n� p���
����� X �����������n��������� p���

����� X ���n���������



yp����
X ����������������

Let
v �� p�����Q

�����n�� 	 p��
��Q
���n���� � A�����V ��

V �� p������Q
�����n�� � p���
��Q

���n�����

According to Lemma 3.9, the operator q��nqn is induced by the class

w � ��	�np��
���p
�
���c��I����n� 	 v� � A�����W ��W �� p��
��V ��

Consider the diagonal part W � fx � yg first. It is contained in
S
i�� Ti, where

Ti � f��� x� x� ��j���x� � ���x� � ig. The closure of T� is the diagonal � �� X ��� �
X 
 X ��������������� and is therefore irreducible of dimension 
��
. Whereas for i � 	,
the set Ti embeds into the irreducible variety X���i� � �X

�i�
� �X X

�i�
� � of dimension


��� i� � �i� 	� � �i� 	�� 
 � 
�.
The off-diagonal part W � fx �� yg is empty if � 
 n. If � � n it has precisely

one irreducible component W� of maximal dimension 
� � 
: it contains as a dense
subset the image of the embedding

f��� ��� � �� � X ���n� �X
�n�
� �X

�n�
� j�� �� and �� are pairwise disjointg ��W�

��� ��� � �� �� �� � �� ������ ��� ��� � � � ���

Since the function ��� x� y� �� �� ���x� is semicontinuous and is at least n on W�,
it follows that W � � � is contained in

S
��n Tn. In particular, this intersection has

dimension � 
�. As we want to compute a cycle of degree 
��	, we may restrict our
attention to the open part W� and may disregard the complement of W� in its closure.

p��
� � p
��
��
��W

��� W � is an isomorphism, which we use to identify W� and the
off-diagonal part of V . Now W� parametrises four flat families of subschemes on X:
besides the families � and Z of fibrewise length �, these are the families � � Z and
� � Z of fibrewise length �� n and �� n. The contribution of W� to w is the class

��	�nc��p�I���
Z� 	 �W
�� � A�����W

���
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Reversing the order of the operators q��n and qn shows that the part of the cycle u
inducing the commutator �q��n� qn�, that is supported on W�, is the class

��	�n
�
c��p�I���
Z�� c��p�I�
Z���

	
	 �W ���

Since the ideal sheaves I���
Z and I�
Z�� are isomorphic, this class is zero.
Thus we may fully concentrate on the contribution of the diagonal part �. (Also

note that for the reversed order qnq��n any diagonal parts must be contained in
S
��n T�

and are therefore too small and irrelevant.)
The complement of the open subset T� �� X ��� � X n �� in �� has codimension

� 
. Locally near p����
��T�� there are isomorphisms between X���n��� and X��� �

X �n�, and similarly between Q���n��� and X��� � X
�n�
� . Hence if �w � A��X� is the

intersection cycle for the special case � � �, then the general cycle is simply given by
w � �X ����� �w � A�����X

��� �X�. But that was all we had to prove: a cycle of this
form induces the linear map

�� � � y ��

Z
�w
�� 	 y� �� � � H��X�Q�� y � H �

�

Corollary 3.14 — For all positive integers n one has

q�n��� � nLn��� � nqn�Kn���

Proof. Use the same argument as in the first paragraph of the proof of the main
theorem after Corollary 3.11. �

To finish the proof of Theorem 3.10 it remains to show:

Proposition 3.15 — For all positive integers n the rational divisor defined by Propo-
sition 3.13 is given by

Kn �
n� 	



K�

where K is the canonical class of the surface X .

This will be done in the next section.

3.4 The vertex operator, completion of the proof

Definition 3.16 — Let � � H��X� be an element which is of even degree though not
necessarily homogeneous, and let t be a formal parameter. Define operators Sm���,
m � �, by

S��� t� ��
X
m��

Sm���t
m �� exp

�X
n	�

��	�n��

n
qn��� 	 t

n

�
�
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Since � is of even degree by assumption, any two operators qn��� and qn����
commute in the ordinary, i.e. ‘ungraded’ sense. In particular, there is no ambiguity in
the meaning of the expression on the right hand side in the definition.

The geometric meaning of the operators Sm is explained by the following theorem:
let C be a smooth curve in X . There is an induced closed embedding SnC � C �n� �
X �n�. Let �C� � H��X� and �C�n�� � H��X �n�� be the corresponding cohomology
classes, i.e., the Poincaré dual classes of the fundamental classes of these varieties.

Theorem 3.17 (Nakajima, Grojnowski) — The following relation holds for all non-
negative integers n:

�C �n�� � Sn��C�� 	 ��

For proofs see [25] and [16]. �

Lemma 3.18 — Let � � H��X� be an element of even degree. Then

S���� t� � S��� t� 	
X
n	�

��	�n��tn
�
Ln��� � qn

�
�Kn � ��

n� 	




	�
�

Proof. Assume first that a is an operator of even degree, and that �a�� a� commutes
with a. Then�

�X
n��

an

n


��
�

�X
n��

	

n


nX
i��

ai�� 	 a� 	 an�i

�

�X
n��

	

n

	

�
nan��a� �

nX
i��

an�� 	 �n� i� 	 �a�� a�

�

�

�X
n��

an

n

	 a� �

�X
n��

an��

n


�
n




�
�a�� a�

� exp�a� 	

�
a� �

	



�a�� a�

�
�

Next, let a� be a family of commuting operators of even degree such that any
�a�� � a
� commutes with every a�. Then it follows from Step 1 and

�a�
� exp�a��� � exp�a�� 	 �a
�

� a� �

that �
exp

�X
�

a�

	��
� exp

�X
�

a�

	
	

�X
�

a�� �
	




X
��


�a�� � a
�

�
�

Now apply this formula to the family a� � ���	���

� q����t
� and use our previous

results a�� � ��	����t��Ln��� � q��K���� and �a�� � a
� � ���t���
q��
����. One
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gets S���� t� � S��� t� 	 ��� with

��� �
X
n	�

��	�n��tn
�
Ln��� � qn�Kn��

�
�

	




X
��
	�

��t���
q��
��
��

�
X
n	�

��	�n��tn 	

�
Ln��� � qn�Kn� �

	



Nn�

��

�

where Nn is the number of pairs of positive integers � and � that add up to n, i.e.,
Nn � n� 	. �

Let C 
 X be a smooth projective curve. The boundary 	X�n� intersects C�n�

generically transversely in the boundary 	C�n� of C�n�, i.e. in the set of all tuples with
multiple points. The subvarieties X

�n�
� and 	C�n� have complementary dimensions

n� 	 and n� 	 in X�n� and we may compute the intersection number

I ��

Z
X�n�

�X
�n�
� � � �	C �n���

We will do this first using our algorithmic language, and afterwards using a geometric
argument. The comparison of the two results will lead to the identification of the
divisors Kn.

Lemma 3.19 — �X
�n�
� � � qn�	X� 	 � and �	C�n�� � �
 	 S�n��C�� 	 �.

Proof. The first assertion follows from the definition of the operators qn. By
Nakajima’s Theorem, Sn��C�� 	 � is the class of the submanifold C�n� 
 X �n�, and
hence according to Lemma 3.7:

S�n��C�� 	 � � d 	 Sn��C�� 	 � � �
	



�	X �n�� 	 �C �n�� � �

	



�	C �n���

�

Lemma 3.20 —Z
X�n�

�qn�	X� 	 �� 	 �S
�
n��C�� 	 �� �

Z
X

�
nKnC �

�
n




�
C�

�
�

Proof. Indeed,Z
X�n�

�qn�	X � 	 �� 	 �S�n��C�� 	 �� � ��	�n
Z
X�	�

q�n�	X�S
�
n��C�� 	 �

� ��	�n
Z
X�	�

� q�n�	X�� S
�
n��C�� � 	 ��

since q�n�	X�	� � �. Now q�n commutes with any product qi� 	� � �	qis if s � 
, ij 

� and

P
j ij � n. Thus the only summand in S�n that contributes to the commutator

with q�n is ��	�n��qn�C�Kn � C�n� 	��
��. Hence

�q�n�	X�� S
�
n��C��� � ��	�nn

Z
X
C

�
Kn �

n� 	



C

�
	 idH
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This proves the lemma. �

Next, we give the geometric computation of I:

Lemma 3.21 — Z
X�n�

�X
�n�
� � 	 �	C �n�� � �n�n� 	� 	 C�C �K��

Proof. We have �X�n�
� �	�	C �n�� � �	X �n��	��X

�n�
� �	�C �n���. The intersection of X�n�

�

and C�n� is transversal and is equal to the image of the closed immersion � � C � C�n�

sending a point c to the unique subscheme of C of length n that is supported in c. Thus

I � deg�OX�n��	X �n��j
�C	 � deg�OC�n��	C �n��j
�C	�

The embedding � factors through the diagonal embedding C � Cn and the quotient
map � � Cn � C �n�. Moreover, if prij � Cn � C� denotes the projection to the
product of the i-th and j-th factor,

���OC�n��	C �n��� ��

�
� nO

i�j

pr�ijOC�C��C�

�
A
��

�

From this we conclude:

I � deg���OC�n��	C �n��� � 
 	

�
n




�
deg�OC�C��C�j
C

��

� �n�n� 	� 	 C�C �K��

�

Proof of Proposition 3.15. From Lemma 3.19 and Lemma 3.20 we conclude

I � ��
� 	 C�nKn �

�
n




�
C��

Comparison with Lemma 3.21 shows that Kn � n��
� K . �

This finishes the proof of Theorem 3.10.

4 Towards the ring structure of H

4.1 Tautological sheaves

There is a natural way to associate to a given vector bundle on X a series of tauto-
logical’ vector bundles on the Hilbert schemes X�n�, n � �. The Chern classes of the
tautological bundles may be grouped together to form operators on H .
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Consider the standard diagram

�n 
 X �n� �X
q
�� X

p



y
X �n�

Let F be a locally free sheaf on X . For each n � � the associated tautological bundle
on X�n� is defined as

F �n� �� p��O�n � q�F ��

Since p is a flat finite morphism of degree n, F�n� is locally free with

rk�F �n�� � n 	 rk�F ��

Note that F ��� � � and F ��� � F .
Furthermore, if �� F� � F � F� � � is a short exact sequence of locally free

sheaves on X , the corresponding sequence � � F
�n�
� � F �n� � F

�n�
� � � is again

exact. Hence sending the class �F � of a locally free sheaf F to �F�n�� gives a group
homomorphism

��n� � K�X� �� K�X �n���

Definition 4.1 — Let u be a class in K�X�. Define operators

c�u� � End�H � and ch�u� � End�H �

as follows: For each n � �, the action on H��X �n��Q� is given by multiplication with
the total Chern class c�u�n�� and the Chern character ch�u�n��, respectively.

Let
c�u� �

X
k��

ck�u� and ch�u� �
X
k��

chk�u�

be the decompositions into homogeneous components of bidegree ��� 
k�. Since all
of these operators are of even degree and only act ‘vertically’ on H by multiplication,
they commute with each other and in particular with the previously defined boundary
operator d � c��OX�.

Moreover, we have

c�u� v� � c�u� 	 c�v� and ch�u� v� � ch�u� � ch�v�

for all u� v � K�X�.

Theorem 4.2 — Let u be a class in K�X� of rank r and let � � H��X�. Then

�ch�u�� q����� � exp�ad d��q��ch�u�����
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or, more explicitly,

�chn�u�� q����� �

nX
���

	

�

q
��	
� �chn���u����

Similarly,

c�u� 	 q���� 	 c�u�
�� �

X
��k��

�
r � k

�

�
q
��	
� �ck�u����

Proof. We may assume that u is the class of a locally free sheaf F . Recall the
standard diagram for the incidence variety X�������:

X
�
�� X ������� �

�� X �����

�



y
X ���

The variety X������� parametrises two families of subschemes of X . Their structure
sheaves fit into an exact sequence

�� ��XO
X
� p�OX���������E�� ��X�O����

�� ��X�O���� ��

where p � X������� �X � X ������� is the projection and E is the exceptional divisor.
Applying the functor p�� 	 � q�F � to this exact sequence yields

�� ��F �OX���������E�� ��F ����� � ��F ��� � �� (11)

Let � � c��OX���������E��. Then

��ch�F ������ � ��ch�F ���� � ��ch�F � 	 exp���

and

��c�F ������ � ��c�F ���� 	
X
��k��

�
r � k

�

�
����ck�F ��

It follows for any x � H��X ����Q�:

ch�F �q�����x� � ch�F ������ 	 PD������X
�������� � ��������x��

� PD������X
�������� � ���ch�F ���������������x��

� PD������X
�������� � ��������ch�F ����x��

�
X
���

	

�

PD������

� 	 �X �������� � ���ch�F ������x��

� q�����ch�F �x� �
X
���

	

�

q��	�ch�F ����x��

Here we used Lemma 3.9 which says that the cycle �� 	 �X �������� induces the operator

q
��	
� . This is the equation for the Chern character. The equation for the total Chern

class is proved analogously. �
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Corollary 4.3 — For any u � K�X� let C�u� be the operator

C�u� � c�u� 	 q��	X� 	 c�u�
�� �

X
��k��

�
rk�u�� k

�

�
q
��	
� �ck�u���

Then X
n��

c�u�n�� � exp�C�u�� 	 ��

Note that the right hand side can be explicitly expressed in terms of the basic
operators qn by applying Theorem 3.10.

Proof. We haveX
n��

c�u�n�� � c�u�
X
n��

	X�n�

� c�u� exp�q��	X�� 	 �

� c�u� exp�q��	X��c�u�
�� 	 �

� exp�c�u�q��	X ��c�u���� 	 �

� exp�C�u�� 	 ��

�

Remark 4.4 — The sequence (11) was used by Ellingsrud in a recursive method to
determine Chern classes and Segre classes of tautological bundles (unpublished, but
see [28],[5]). He expresses the classes ��� ���c�E� in terms of the Segre classes of the
universal family ��n� 
 X � X �n�. Thus one needs to control the behaviour of these
Segre classes under the induction procedure. This method yields qualitative results
on the structure of certain classes and integrals, but all attempts to get numbers have
ended so far in unsurmountable combinatorial difficulties. �

Remark 4.5 — The results of the present and the previous section provide an algo-
rithmic description of the multiplicative action of the subalgebra A 
 H which is
generated by the Chern classes of all tautological bundles: The elements qi����� 	
� � � qis��s� 	 � generate H as a Q-vector space. By Corollary 3.11, each such element
can be written as a linear combination of expression w 	 �, where w is a word in an
alphabet consisting of d and operators q����, � � H��X�Q�. By Theorem 4.2 the
commutator of ch�F � with any of these is again a word in this alphabet. And finally,
Theorem 3.10 shows how such a word can be expressed in terms of the basic oper-
ators qn. Admittedly, without a further understanding of the algebraic structure this
description is useful for computations in H��X ����Q� only for small values of � or if
one implements it in some computer algebra system. The following sections deal with
special situations where one can say more.
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4.2 The line bundle case

The results of the previous section suffice to compute the Chern classes of the tauto-
logical bundles L�n� associated to a line bundle L in terms of the basic operators.

Theorem 4.6 — Let L be a line bundle on X . Then

X
n��

c�L�n�� � exp

�
�X

m��

��	�m��

m
qm�c�L��

�
A 	 ��

Remark 4.7 — Expanding the term on the right hand side, one realises that the coho-
mological degree of any summand contained in H��X �n��Q� is � 
n, and, moreover,
the maximal degree 
n can only be attained if the arguments of all operators q� in-
volved have degree 2. In other words, considering elements of top degree only, the
equation of the theorem specialises to

X
n��

cn�L
�n�� � exp

�
�X

m��

��	�m��

m
qm�c��L��

�
A 	 �� (12)

This is Nakajima’s result 3.17: for suppose C 
 X is a smooth curve andL � OX�C�.
If � � X �n�, the natural homomorphism OX � O��C� vanishes if and only if � 
 C .
Hence the vanishing locus of the global vector bundle homomorphism

OX�n� �� �OX�C���n� � L�n�

is the subvariety C�n�. Therefore �C�n�� � cn�L
�n��. Inserting this into (12), we recover

Nakajima’s formula 3.17

X
n��

�C �n�� � exp

�
�X

m��

��	�m��

m
qm��C��

�
A 	 �

Based on this observation, the theorem was conjectured by L. Göttsche in a letter to
G. Ellingsrud and the author.

Proof of the theorem. We shall give two variants of the proof which differ slightly
in flavour. We have seen that the left hand side in the theorem equals exp�C�L�� 	 �,
where in this case because of r � 	 we have

C�L� � q��c�L�� � q���	X��

Variant 1. Expanding the right hand side of

exp�C�L�� 	 � �
X
n��

	

n

�q��c�L�� � q���	X��

n 	 �
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yields summands which are words in the two symbols q��c�L�� and q���	X�. Mov-
ing all factors q���	X� within a given word as far to the right as possible using the
commutation relations of the main theorem we can writeX

n��

	

n

�q��c�L�� � q���	X��

n 	 � � A 	 ��B 	 q���	X � 	 � � A 	 ��

where A is a sum of expressions of the form

��
 	 � � � 	 �s
 	
��	�����q���c�L��

��
	 	 	

��	��s��q�s�c�L��

�s
�

Let � � �	��
����� � � � � denote a partition and let j�j ��
P

i�� i�i, and �
 ��Q
i�i
�

�i . We get

X
n��

	

n

�q��c�L�� � q���	X ��n 	 � �

X
�

N�
�


j�j


Y
i��

�
��	�i��qi�c�L��

i

��i

	 �� (13)

where the natural number N� counts how often the operator

�

Y
i��

�
��	�i��qi�c�L��

i

��i

arises from a word in q���	X � and q��c�L�� of length j�j. It is not difficult to see that
N� equals the number of possibilities to partition a set of j�j elements into subsets in
such a way that there are �i subsets of cardinality i. Hence

N� ��
	

��
��
 	 	 	
	
j�j


�

�

Inserting this into equation (13) above one gets

X
n��

	

n

�q��c�L�� � q���	X��

n 	 � �
X
�

Y
i��

	

�i


�
��	�i��qi�c�L��

i

��i

	 �

�
Y
i��

X
�i��

	

�i


�
��	�i��qi�c�L��

i

��i

	 �

�
Y
i��

exp

�
��	�i��qi�c�L��

i

�
	 �

� exp

�
�X

i��

��	�i��

i
qi�c�L��

�
A 	 ��

In fact, being a little more careful, one gets

exp�C�L�� � exp

�
�X

i��

��	�i��

i
qi�c�L��

�
A 	 exp�q���	X ���
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Variant 2. Starting again from the sequence

c�L� 	 q��	X� � C�L� 	 c�L��

we multiply by �
n�q��	X�

ntn from the right and sum up over all n � �:

d

dt

�
�c�L� 	X

n��

	

n

q��	X�

ntn

�
A 	 � � c�L� 	

X
n��

	

n

q��	X�

n��tn 	 �

� C�L� 	

�
�c�L� 	X

n��

	

n

q��	X �ntn

�
A 	 ��

This means that the seriesX
n��

c�L�n��tn � c�L� 	 exp�q��	X�t� 	 �

satisfies the linear differential equation

d

dt
X � C�L� 	 X (14)

with initial condition

X��� � �� (15)

On the other hand, consider the operator

S�c�L�� t� � exp

�
�X

m��

��	�m��

m
qm�c�L��t

m

�
A �

We find

d

dt
S�c�L�� t� � S�c�L�� t� 	

�
�X

m��

��	�mqm���c�L��t
m

�
A �

and h
fq��	X � c��L�� � q���	X�g� S�c�L�� t�

i

� S�c�L�� t� 	

�
�X

m��

��	�m��

m

h
q���	X�� qm�c�L��

i
tm

�
A

� S�c�L�� t� 	

�
�X

m��

��	�mqm���c�L��t
m

�
A �
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This shows

fq��	X � c��L�� � q���	X�g 	 S�c�L�� t� 	 �

� S�c�L�� t� 	

�
�X

m��

��	�mqm���c�L��t
m

�
A 	 �

�S�c�L�� t� 	 q��c�L�� 	 �

� S�c�L�� t� 	

�
�X

m��

��	�mqm���c�L��t
m

�
A 	 �

Hence S�c�L�� t� 	 � satisfies the system (14) and (15) as well and therefore equals
c�L� 	 exp�q��	X�t� 	 �. This proves the theorem. �

4.3 Top Segre classes

The following problem was posed by Donaldson in connection with the computation
of instanton invariants: let n be an integer � 	, and consider a linear system jHj of
dimension �n � 
 inducing a map X�� �P�n��. A zero-dimensional subscheme
� � X �n� does not impose independent conditions on the linear system jHj if the
natural homomorphism

H��P�n���OP�	�� �� H����O��H��

fails to be surjective. The subscheme of all such � � X�n� has virtual dimension zero,
and its class is given by c�n�W��, where W is the virtual vector bundle

H��P�n���OP�H�� �OX�n� �O�H��n��

Thus the number of those � that impose dependent conditions is given by

Nn ��

Z
X�n�

c�n��O�H��n�� �

Z
X�n�

c��O�H�� 	
q��	X�

n

n

	 ��

More explicitly, N� is the degree of the linear system, N� is the number of double
points, N� is the number of trisecants to a surface in P� and N
 is the number of
quadruples of points on a surface in P�� that span a plane.

Problem: Express Nn in terms of intrinsic invariants of X such as the degree
d �� H�H , the intersection � �� H�K and � �� K�K and the topological Euler
characteristic e � c��X�.

Note that even the fact that such an expression in terms of the given invariants
exists is not evident a priori. This has been proved by Tikhomirov [28]. It also follows
immediately from our approach.
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Using our algorithm, we can attack this problem as follows. Theorem 4.2 yields
for F � �O�H� and r � �	 the formula:

C��O�H�� �
X
��k��

�
�	� k

�

�
q
��	
� �ck��H��

�
X
���

��	��q
��	
�

�
�X

k��

�
� � k

k

�
��H�k

�

�
X
���

��	��q
��	
� ��	 �H �H�������

It follows as in the proof of Theorem 4.6 that c��O�H��	exp�q��	X�t�	� satisfies
the following differential equation and initial value condition:

d

dt
X � C��O�H��X and X��� � ��

As long as no explicit generating function is available we must be content with the
following semi-explicit solution to the problem:

Nn �
	

n


Z
X�n�

C��O�H��n 	 ��

Example 4.8 — As a special case, let us compute N�. This is the number of secant
lines to an embedded surface in P� that pass through a fixed but general point x � P�.
Hence we should find Severi’s double point formula [26] (see also [2]). Let � �
	�H �H�. Then


 	N� �

Z
X���

C��O�H��� 	 � with C��O�H�� �
X
n��

��	�nq
�n	
� �������

Since q
�n	
� 	 � � � for all n 
 � and for all parameters, we have C��O�H�� 	 � �

q���� 	 �. Moreover, for degree reasons the infinite sum reduces to

C��O�H��� 	 � � �q����� q����
�� � q�����

��� q���� ��

� � q����� �����q���� 	 ��

Using q��	� �x�q��y� 	 � � �q
����	
� �xy� 	 � this becomes

C��O�H��� 	 � � �q����q���� � q���
��� q����


� � q�����
�� � q���� ��

��� 	 ��

For the higher derivatives q�n	� , n � 
, there is the following recursion formula:

q
�n	
� �x� 	 � �

�
q�����x�� � q��Kx�

��n��	
	 �

�
�
� q

�n��	
� �c��X�x� � q

�n��	
� �Kx�

�
	 ��

(Recall that the composite map H��X�
�
�� H��X� � H��X�



�� H��X� is the

multiplication with the self intersection of the diagonal, i.e. the second Chern class
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c��X� of X .) Using this formula repeatedly and keeping in mind that K�e � K� �
e� � � and K���� � K�, e��� � e, we finally arrive at

C��O�H��� 	� � �q����
��q������


�K���K��e��q���
��K�
�K��e�� 	��

Only the first two summands contribute to the integral. Hence


 	

Z
X���

C��O�H��� 	 � �

�Z
X
�

��

�

Z
X
��
 �K�
 �K� � e�

� d� � 	�d � �� � �� e�

�

For higher n, the practical calculation of Nn quickly becomes rather difficult. Al-
ready the case of N� surpassed my personal calculation skills. Using MAPLE, I com-
puted Nn for n � �. One obtains for example:

�
 	N� � d� � ��d� � 

�d � �d��� � �� e�

�	�
� � ���� ��e�

�
 	N
 � d
 � ��d� � d��		�� � ��� � �e� ���

�d���
� � 	���� � 

�e� 
���� � �e� � 	���e � �e�

���e� � ���� � ��� � ���� � ���
� � ������

�
 	N� � d� � 	��d
 � d������ � 	�e � ��� � 	���

�d���
��� � ��
�� � ���e � ����� � d������� � 	�e�

�	����e � ��e� � 	���e � 	��� � 	���� � ���	��

�
����� � ������� ���e� � 		�	
�e � ��
��e � ����e

�

����� � ��
��� � ����� � ������� � �������

These calculations verify LeBarz’ trisecant formula for N� [21, Théorème 8] and
the computation of N
 by Tikhomirov and Troshina [29]. The formula for N� seems
to be new. I omit the presentation of N� and N�: the information is contained in the
following analysis of these numerical data. For X � P� and OX�H� � OP��m� these
tally with the polynomials computed by Ellingsrud and Strømme using a torus action
on P� and the Bott formula [8].

Taking the logarithm of the generating function, we may write:

X
n��

Nnz
n � exp

�X
m	�

��	�m��

m
dmz

m

�
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where the coefficients dm a priori are rational polynomials in d � H�, � � HK ,
� � K� and e. One can show that these polynomials are in fact linear (cf. [5]). The
explicit calculation yields

d� � d
d� � 	�d� �� � e� �

d� � 		
d � ��� � 
�e � 
��
d
 � 	�
�d � 	���� � �
�e � ����

d� � 	��	�d � 

	
�� � ����e � �����
d� � 	���	�d � �	����� � �����e � 	�	
���

d� � 
������d � ���
�
�� � 	�	
��
e � 
�
�	�
��

From this one can attempt to guess the generating functions. Let

k � z � �z� � ��z� � � � � � Q ��z��

be the inverse power series of the rational function

z �
k�	� k��	 � 
k�


�	� �k � �k���
�

This is a solution of the differential equation

dz

z
�

dk

k�	� k��	 � 
k��	 � �k � �k��
�

Conjecture 4.9 — Using the notations above the following formula holds:

X
n��

Nnz
n �

�	� k�a 	 �	� 
k�b

�	� �k � �k��c

with a � HK � 
K�, b � �H �K�� � ���OX�, and c � �
�H�H �K� � ��OX�.

We thank Don Zagier for pointing out to us the existence of Sloane’s ‘Encyclopedia
of Integer Sequences’ [27]. Intensive use of the on-line version of the Encyclopedia,
numerous numerological experiments and some inspiring help from Don Zagier al-
lowed me to guess the generating functions. He also found a simple substitution to
turn my still awkward version of the generating function into the smooth form pre-
sented above.

4.4 The cohomology ring of �A ���n�

In this section we will describe an identification of the cohomology ring of �A���n�

with the ring of certain explicitly given differential operators on the polynomial ring
in countably many variables. After writing this section I learnt from a letter by N.
Fakhruddin [10] of his description of the cohomology ring using a different approach.
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Of course, the affine plane A � is not projective, so that we cannot directly apply
the methods of the previous sections. On the other hand, in [24] Nakajima does work
with non-projective surfaces, the only difference being that the operators qn, n 
 �,
must be modelled on cohomology classes with compact support rather than ordinary
cohomology classes. The reason for this is that, in the notations of Definition 2.3, the
morphism p� is proper, so that push-forward is defined, whereas p� is proper only if
the variety X is proper. With this modification Nakajima’s main theorem holds for the
affine plane as well.

As H��A � �Q� � Q , we simplify notations by putting qm �� qm�	A � �. Then
H �

L
n�iH

i��A � ��n��Q� �� Q �q� � q�� � � � �, the polynomial ring in countably infinitely

many variables, and if qm is given degree m, then Hn �� H���A � ��n��Q� is the ho-
mogeneous component of H of degree n. As any vector bundle on A� is trivial, there
is essentially only one tautological bundle O�n� on �A � ��n�. Let chi � H � H be the
components of the associated Chern character operator, and let d � ch� as before. The
inclusion A � 
 P� induces an open embedding �A���n� 
 �P���n� which in turn gives
rise to an epimorphism of rings H���P���n��Q� � H���A � ��n��Q�. This implies that
all commutation relations for the qm and chi hold in H as well. In fact they become
much simpler as the pull-back both of c��P�� and c��P

�� is zero. To describe these
relations in the given special setting, let 	m �� m �

�qm
.

Theorem 4.10 — The Chern character of the tautological bundle acts on H as follows:

ch� �
��	��

�� � 	�


X
n	����n�	�

qn	�����n�	n	 	 � � � 	 	n� �

For each n, the cohomology ring Hn is generated as a Q–algebra by ch��O�n��, and the
relations between these generators are those of the restriction of the given differential
operators to Hn .

That H n is generated by the chern classes of the tautological bundle had earlier
been proved by Ellingsrud and Strømme [7].

In order to prove the theorem we consider a larger class of differential operators
on H defined by

Dn�� ��
X

n����� �n�	�

qn�
P

i ni

�Y
i��

	ni

for nonnegative integers n and �, with the usual conventions Dn�� � qn for n 
 �
and D��� � �. The key observation is that d � ��

�D���. This follows directly from
Theorem 3.10 and the fact that in the present situation H��A � �Q� � Q . It is easy to
check by explicit calculation that these operators satisfy the following commutation
relations

�Dn�� �Dm�
� � ��m� �n� 	Dn�m���
���

In particular, q�n � ��
� �D����Dn��� � �n 	Dn��, or more generally, by induction:

q��	n � ��n�� 	Dn�� �
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We can now easily generalise Theorem 4.2:

�chn� qm� �
��	�n

n

m 	Dm�n�

For m � 	 the assertion follows from the basic relation (Theorem 4.2)

�chn� q�� �
	

n

q
�n	
� �

��	�n

n

D��n�

and for m 
 	 we deduce it by induction using �mqm�� � �q��� qm� as well as
q�� � �D��� and �chn� q

�
�� � �chn� q��

�.

Proof of the theorem. We must first show that

chn � ��	�n
D��n��

�n� 	�

�

Observe that by the commutation rules for the operators D��� we have

�
��	�n

�n� 	�

D��n��� qm� � �

��	�n

�n� 	�

D��n���Dm��� �

��	�n

n

m 	Dm�n�

Thus chn and ���	n

�n��	�D��n�� show the same commutation behaviour with all generators
qm of H and clearly act trivially on the vacuum. Hence they are equal.

It remains to check that the Chern classes of the tautological bundle generate Hn .
Let � � ���� ��� � � � � be a partition of n, i.e. n � k�k ��

P
i i�i and let q� ��

Q
i q

�i
i

be the associated monomial. The monomials q� with k�k � n form a Q-basis of
H n . Let us say that q� 
 q
 if � 
 � in the lexicographical order. We want to
show that the subring H �n in H generated by the action of chm, m � 	� � � � � n � 	,
on 	 � qn� � q�n������ 	 contains the monomial q� for all partitions � of n. As this is
true for the smallest possible monomial q�n������ 	, we proceed by induction. Given �
we assume that q
 � H �n for all q
 
 q�. As � �� �n� �� � � � �, let a be the smallest
index 
 	 such that �a 
 �, i.e. � � ���� �� � � � � �� �a� �a��� � � � �� Consider now the
partition

�� �� ��� � a� �� � � � � �� �a � 	� �a��� � � � ��

Then q�� 
 q� and hence is contained in H �n and

cha��q�� � ��	�a��
�
�� � a

a

�
q� � � � �

where � � � stands for a linear combination of smaller monomials. This finishes the
induction. �
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